2014 Ann Schreiber Mentored Investigators Award Recipient – Kyung Hee Noh, PhD

Kyung Hee Noh, PhD
MD Anderson Cancer Center
Targeting Adaptive Changes to anti-VEGF Therapy in Ovarian Cancer
(grant originally made to Hyun Jin Choi, MD)

Kyung Hee Noh, PhD

 

 

 

 

 

 

 

Project Summary
Inhibition of vessel production is a promising therapeutic approach to fighting advanced cancer. But, resistance emerges quickly and new approaches are needed. Using sophisticated genomic approaches with endothelial cells isolated from tumors with adaptive resistance to anti-VEGF therapy, we identified substantially elevated CD5L levels. When we silence gene activity of CD5L, vessel production was remarkably reduced in a mouse ovarian cancer model, even in tumors that were resistant to anti-VEGF therapy. We found that CD5L silencing resulted in increased cell death in the tumor-associated endothelial cells. Preliminary mechanistic studies suggest that CD5L is increased by hypoxia and protects endothelial cells from apoptotic effects. Our overall hypothesis is that resistance to anti-angiogenic therapy can be overcome by targeting CD5L. This hypothesis will be tested under the following two specific aims: Aim 1: To determine the mechanisms by which CD5L supports endothelial cell survival during anti-VEGF therapy. Aim 2: To investigate the biological effects of CD5L inhibition using orthotopic mouse models of adaptive resistance to anti-VEGF therapy. We expect that results from this study will not only provide a new understanding of the mechanisms underlying resistance to anti-angiogenic therapy, but will have translational implications by identifying innovative therapeutic strategies for overcoming such resistance.

Bio
Dr. Kyung Hee Noh got her Ph.D. in Cancer Biology at Korea University in South Korea. After graduating, she worked as a research professor at College of Medicine, Korea University, for two years. Dr. Choi is currently working as a post-doctoral fellow in the lab of Anil Sood at MD Anderson Cancer Center. Her research primarily focuses on studying the microenvironment, particularly in regards to tumor angiogenesis.