2014 Program Project Development Grant Recipient – Ronen Marmorstein, PhD

Ronen Marmorstein, Ph.D
University of Pennsylvania
Chromatin Regulatory Mechanisms in Ovarian Cancer

Ronen Marmorstein, PhD

Co-Investigators

Jose Conejo-Garcia, MD, PhD, Wistar Institute
Frank Rauscher, III, PhD, Wistar Institute
Ramin Shiekhattar, PhD, Wistar Institute
David Speicher, PhD, Wistar Institute
Rugang Zhang, PhD, Wistar Institute

Project Summary

The goal of this project is to understand how proteins that control the packaging and transmission of our genetic information, called transcription factors, are deregulated in ovarian cancer and to leverage this understanding to develop new therapies for this devastating disease. To achieve this goal, we have assembled a group of outstanding investigators from University of Pennsyvlania and The Wistar Institute with extensive expertise in ovarian cancer and the regulation of gene expression by transcription factors. Other team members provide complimentary expertise in key methodologies required to accomplish the proposed studies including cell biology, biochemistry, structural biology, and drug development. These investigators have a strong record of funding from the National Cancer Institute in basic and translational ovarian cancer and/or gene expression, and have co-published more than 20 research articles.

The program includes four highly coordinated, hypothesis-driven projects. Project 1, led by Dr. Rugang Zhang, will study the ARID1A transcription factor and test the hypothesis that ARID1A inactivation promotes ovarian cancer by suppressing a cell state called senescence through altering the ability of ARID1A to promote the expression of certain genes. Project 2, co-led by Drs. Ramin Shiekhattar and José Conejo-Garcia, will study the BRCA1 transcription factor and test the hypothesis that BRCA1 functions as a general stimulatory factor for gene expression and that loss of BRCA1 leads to disruption of key gene expression programs resulting in ovarian cancer. Project 3, led by Dr. Frank Rauscher, will study the Snail and Slug transcription factors and test the hypothesis that a switch in the activities of these proteins mediates ovarian cancer. Project 4, co-led by Drs. Ronen Marmorstein and David Speicher, will study the role of the TCEAL7 and HBO1 protein acetyltransferases in the regulation of gene expression and test the hypothesis that altered protein acetylation status mediated by a disruption of these key proteins stimulates ovarian cancer cell growth.

Importantly, the success of these projects depends on the combined scientific and technical expertise of the group. Together, these studies will provide novel detailed insights into the roles of key transcription factors in ovarian cancer and lead to the identification and characterization of new therapeutic strategies and novel drugs to target key proteins that aberrantly regulate gene expression in ovarian cancer.

Bio
Dr. Marmorstein obtained his Ph.D. in Chemistry from the University of Chicago and, following a postdoctoral fellowship at Harvard University, joined the faculty at The Wistar Institute in 1994. In 2013, Dr. Marmorstein relocated to the Perelman School of Medicine at the University of Pennsylvania where he is currently a Professor in the Department of Biochemistry and Biophysics and Investigator in the Abramson Family Cancer Research Institute (AFCRI). Dr. Marmorstein also holds adjunct appointments at the Wistar Institute and the Department of Chemistry at the University of Pennsylvania.

Dr. Marmorstein’s laboratory uses a broad range of molecular, biochemical and biophysical research tools centered around X-ray crystal structure determination to understand the chemical basis for the epigenetic regulation of gene expression. The laboratory is particularly interested in gene regulatory proteins and their upstream signaling kinases that are aberrantly regulated in cancer and other age-related disorders such as obesity and Alzheimer’s disease, and the use of high-throughput small molecule screening and structure-based design strategies towards the development of protein-specific small-molecule probes of protein function and for development into therapeutic agents.